Computing the Chromatic Index of Steiner Triple Systems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing the Chromatic Index of Steiner Triple Systems

A Steiner triple system of order v, denoted STS (v), is a pair (V, B); V is a u-set of elements and B is a collection of 3-subsets of V called blocks. Each unordered pair of elements is contained in precisely one block. There is a substantial body of research on STS, partially because of their wide applicability in the design of experiments, and in the theory of error-correcting codes. In the d...

متن کامل

Circulants and the Chromatic Index of Steiner Triple Systems

We complete the determination of the chromatic number of 6valent circulants of the form C(n; a, b, a+b) and show how this can be applied to improving the upper bound on the chromatic index of cyclic Steiner triple systems.

متن کامل

The triangle chromatic index of Steiner triple systems

In a Steiner triple system of order v, STS(v), a set of three lines intersecting pairwise in three distinct points is called a triangle. A set of lines containing no triangle is called triangle-free. The minimum number of triangle-free sets required to partition the lines of a Steiner triple system S, is called the triangle chromatic index of S. We prove that for all admissible v, there exists ...

متن کامل

On the 2-parallel chromatic index of Steiner triple systems

The 2-parallel chromatic index X" (8) is the minimum number of colours required to colour the blocks of a Steiner triple system 8 so that any two parallel blocks receive different colours. The value of X" (v) = min {X" (8) : 8 is an 8TS(v)} is determined for all admissible v.-It is further shown how the 2-parallel chromatic index is related to the independence number and a complete analysis for...

متن کامل

5-Chromatic Steiner Triple Systems

We show that, up to an automorphism, there is a unique independent set in PG(5,2) that meet every hyperplane in 4 points or more. Using this result, we show that PG(5,2) is a 5-chromatic STS. Moreover, we construct a 5-chromatic STS(v) for every admissible v ≥ 127.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Computer Journal

سال: 1982

ISSN: 0010-4620,1460-2067

DOI: 10.1093/comjnl/25.3.338